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An invariant imbedding method is proposed for numerically solving singular boundary 
value problems with a regular singular point at one end of the interval. The singular problem 
is first reduced to a regular boundary value problem by using series solution in the vicinity of 
the singular point to subtract out the singularity. The regular boundary value problem is then 
solved by employing invariant imbedding method. Some numerical examples have been 
included to demonstrate the efficiency of the method. 

1. INTRODUCTION 

Consider a second-order linear differential equation 

f,(x) Y” +fi(x> Y’ +fi(x> Y = 0 (1) 

where fdx), f, (4 and .A( x are analytic at some point x=x0 (say), then x=x0 is > 
said to be an ordinary point in the sense that the solution of (1) can be represented 
by a power series in powers of (x - x0). If for some point x = xo,fO(xO) = 0, then x0 
is called a singular point of Eq. (1). In such a case rewriting Eq. (1) in the form 

y” + F,(x) y’ + F,(x) y = 0 (2) 

where Fi(x) =fi(x)/fO(x), i = 1, 2, we see that the coefficients P,(x) and F*(X) fail to 
be analytic at x = x0. Singularities have been divided into two kinds; regular singular 
points and irregular points. The point x = x0 is said to be regular singular point of (2) 
if (x - x,,) F,(x) and (x -x0)2 F*(X) are analytic at x,,; otherwise x = x,, is an 
irregular singularity. We now consider our method for Iinding the solution of singular 
boundary value problem given by 

L(Y) =Y” + F,(x)Y’ + F,(x)Y = Q(x), x,<x<b (3) 

subject to boundary conditions 

Y(xJ = a 
0) = P- 
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(4) 
(5) 
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Singular boundary value problems of the above type have been studied by several 
authors. To mention a few, Jamet [ 1 ] has discussed existence and uniqueness of 
solutions and presented finite difference method for numerically solving such 
problems. Gustafsson [2] has treated the problem by first writing the series solution 
in the neighbourhood of the singularity and employing several compact and non- 
compact difference schemes in the remaining part of the interval. Cohen and Jones 
[3] have used an economized expansion to overcome the slow convergence of the 
Taylor series solution for the problems and employed deferred correction outside the 
range of economized expansion. Reddien [4] has studied collocation method for the 
numerical solution of such problems. 

Scott [5] has considered sufficient conditions for existence of two different versions 
of invariant imbedding for linear second-order equations having a regular singular 
point. The work of Scott constitutes a significant extension of earlier results of Banks 
and Kurowski [6]. Elder [7] has described an invariant imbedding method for 
calculating the smallest eigenlength of a singular two-point boundary value problem 
with the singularity at the origin. Nelson [8] has adapted the approach of Elder to the 
solution of homogeneous two-point boundary value problems with a singularity of the 
first kind. 

In this paper the invariant imbedding is proposed for numerically solving singular 
boundary value problems. The singular problem (3~(5) over the interval [x,, b], x0 a 
regular singularity, is first reduced to a regular boundary value problem over (6, b], 
6 > x,,; this is done by making use of series solution in the vicinity of the singularity 
and obtaining boundary condition at the point 6. The method of invariant imbedding 
is then developed for solving the resulting regular boundary value problem by 
reducing it to a sequence of initial value problems. These initial value problems are 
solved numerically by efficient initial value procedures. Some numerical examples 
have been solved to demonstrate the efficiency of the method. 

2. REMOVAL OF SINGULARITY 

In order to remove the singularity at the point x =x,, for the problem given by 
(3)-(5), we make use of series expansion at a small interval near x =x, in [x,, 61, so 
that Eq. (3) has a solution of the form 

Y(X) = (x - XJP -F Uk(X - Xo)k, 
k:O 

u, # 0. 

Differentiating (6) and substituting in (3) and comparing the coefficients of the 
powers of (x -x0) on both sides, the values of p as the roots of indicial equation and 
the recurrence relations for the coefficients ak are obtained. Depending upon the 
nature of the roots of the indicial equation, the general solution of (3) can be written 
as 

J’(X) = f aiRi + Rs+ 1 (XL m,<2 (7) 
i=l 
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for x E [x0, S], where R r(x) and R,(x) are two linearly independent solutions of 
homogeneous equation corresponding to (3) and R,, r(x) is the particular solution to 
(3). The derivation of Ri(x) in general is treated in Coddington and Levinson 191. 
The basic theoretical results about these series expansions about a singular point have 
been reviewed by Keller [lo]. The series solution may be valid for the entire interval 
Ix,,, b], but we need the series expansion in the interval [x0, 61 only. 

We now transform the problem (3k(5) to a regular boundary value problem over 
the interval [ 6, b 1, where 6 is any point in the interval (.x0, b). We thus have to derive 
the boundary condition at the point 6. To do this, we have 

c(,R,(6)+a,R,(6)=y(6)-R,+,(6) (8) 

aI R;(d) + c@;(G) =,v’(J) -R;+ ,(a) (9) 

where the primes denote the differentiation. which can be solved for a, and a, as 

and 

Also, we have from Eqs. (4) and (7) 

“,R,(xn) + @,(x,) =Y(x,> - R,, rh,). 

Using the expansion (lo), (11) and (12) we have 

g(J) R;(J) -g’(J) R,(d) R (x 
h(J) 

1 n 
) 

+ s’(4R,(@-g(@R;(4 
46) R&J =a -R,+ ,W 

11) 

12) 

(13) 

where g(x)=y(x)-RR,+,(x) and h(x)=R,(x)R;(x)-R,(x)Ri(x). Equation(13) 
can be conveniently written as 

I%(~>R,W -RI(4R,(x,)l g(6) + lR,(QR,(x,) -R,(~)R,(x,)l g’(d) 
=h(4la -R,+,(xn)l (14) 

(or) 
Ay(6) + By’(d) = c (15) 
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where 

and 

‘4 = [R;(G)R,(x,)-RI(G)R,(x,)l 
B= IR,(6)R,(x,)-R,(G)R,(xo>l 

C=Wb-K+,(xdl +AR,+,(& +BR:+,(@ 

(Isa) 

Thus the regular boundary value problem over 16, b] is given by Eq. (3) subject to 
boundary condition (15) and y(b) = /I. 

3. INVARIANT IMBEDDING 

In this section we discuss the method of invariant imbedding for solving the regular 
boundary value problem derived in the previous section. We use Scott’s version of 
imbedding [ II] to reduce the regular boundary value problem into a sequence of 
initial value problems which are solved numerically by well-known initial value 
procedures. To be specific, we write Eq. (3) as a system of two first-order equations 
in the form 

u'(x) = u(x), 
XE (6,6/. 

(16) 

-u'(X) = F,(x) u(x) + F,(x) u(x) - Q(x), (17) 

With the boundary conditions given by 

Au(d) + Bv(6) = C (18) 
u(b) = p. (19) 

We now discuss the invariant imbedding method for a more general second-order 
system of the form 

u’(x) = a(x) u(x) + b(x) u(x) + e(x), 

-u’(x) = c(x) u(x) + d(x) u(x) +f(x), 

(20) 

(21) 

with all functions a(x), b(x), c(x), d(x), e(x) andf(x) be continuous and subject to 
the boundary conditions given by (18) and (19). 

Using Scott’s version of invariant imbedding ] 111, we have 

u(x) = S,(x) u(x) + S,(x) u(6) + S,(x), 
XE l&b]. 

(22) 

44 = Q,(x) u(x) + Qz(x> ~(4 + Q.&h (23) 
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It can be easily verified that the coefficients Si(x), i = 1, 2, 3, satisfy the following 
differential equations: 

s;(x) = b(x) + [a(x) + d(x)] S,(x) + c(x) ST(x) 

s;(x) = [4x) + c(x) S,(x)1 S*(x) 
SS(x) = [a(x) + c(x) S,(x)1 S,(x) +f(x> S,(x) + 4x> 

with suitable initial conditions given as 

S,(6) = 0; S,(4 = 1, S,(6) = 0. 

Similarly, the differential equations for the coefficients Qi are 

Q;(x) = 14~) + c(x) S,(x)1 Q,(x) 

Q;(x) = 4x1 Q,(x) S,(x) 
Q;(x) = [c(x) S,(x) +.0x)1 Q,(x) 

subject to the suitable initial conditions given by 

Q,(4 = 1, Q,(4 = 0, Qd4 = 0. 

(24) 

(25) 
(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

4. COMPUTATIONAL ALGORITHM 

In order to compute the solution U, the computation is performed sequentially as 
under the following: 

Step (i) Integrate the initial value problems given by Eqs. (24~(31), using 
efficient initial value routines, from x = 6 to x = b to obtain the Sj and Qi profiles 
and store them. 

Step (ii) Find the values of A, B and C from Eqs. (Isa). 

Step (iii) Evaluate Eqs. (22~(23) at x = b using the values S,(b) and Qi(b) 
(i = 1, 2, 3) from step (i), and u(b) from the boundary condition. The resulting 
equations would contain the unknowns u(6), v(6) and v(b). 

Step (iv) Combine the equations resulting from Step (iii), with Eq. (15), and 
solve these three equations for the unknowns u(6), v(6) and v(b). 

Step (v) Compute v(x) and u(x) for any x E (6, b) using the values of u(6) and 
u(6) from Step (iv), and the stored values of Si and Qi from Step (i). 

It may be noted that Step (i), which incidentally involves maximum computer time 
in the entire computational procedure, need not be repeated if one has to solve 
different boundary value problems given by the same differential equation (3) but 
with different boundary conditions (4)-(5), but that only Steps (iit need be 
repeated for each set of boundary conditions, using the stored values of Si and Qi 
from Step (i), in each case. 
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5. NUMERICAL EXAMPLES AND RESULTS 

In this section we shall illustrate the use of the algorithm we have derived by 
applying it to several examples. In our examples all corresponding initial value 
problems (24)--(3 1) were solved using a fourth- to fifth-order Runge-Kutta-Fehlberg 
scheme designed to estimate the local error and to control the step size for the 
accuracy requirements [ 121. All computations were carried out in single precision on 
a DEC.1090 computer system with a relative and absolute error of 10-j and lo- ‘j, 
respectively. 

EXAMPLE 1. We consider the linear two-point boundary value problem 

u"(X) t G d(x) - w(x) = 0, O<a< 1, r>O 

with boundary conditions 
u(O)= 1, u(l) = 0. 

This problem has been studied earlier by Jamet [I]. 

See Tables I-IV. 

TABLE I 

Numerical Results for Example 1 (u = 0.5, r = 1) 

X s = 0.2 6 = 0.4 s=o.5 

0.2 0.5080600 - 
0.4 0.3221206 0.3221289 
0.5 0.25203 16 0.2520420 0.2520425 
0.9 0.0424309 0.0424321 0.0424322 

TABLE II 

Comparison of Numerical Results for Example 1 
((7 = 0.5, 5 = 1, x = 0.5) 

Invariant imbedding 
N= Ijh Jamet’s method Reddien’s method methoda 

8 0.29038211 0.25305 0.25204250 
16 0.27825809 0.25223 - 
32 0.27009658 - 

128 0.26077219 
512 0.25633371 - 

a The step size h has no direct relevance to invariant imbedding solution 
and refers only to Jamet’s and Reddien’s solutions. 
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TABLE III 

Numerical Results for Example 1 
(6=0.05, 0=0.5, 5= 1) 

x 

0.05 0.75006408 
0.10 0.64846210 
0.15 0.57142780 
0.20 0.50806241 
0.50 0.25204202 
0.80 0.08773196 
0.90 0.04243212 

I4 

TABLE IV 

Numerical Results for Example 1 
(6=0.125,0=0.5, r= 1) 

X ll 

0.125 0.6076 1680 
0.250 0.45343930 
0.375 0.34147399 
0.500 0.25204244 
0.625 0.17697532 
0.750 0.11175222 
0.875 0.53454321 
1.000 0.00000000 

EXAMPLE 2. Next we make the numerical experiments on the equation 

u~~(x)+~u~(.~)=--~~~~cosx-(2-~)x~~sinx, O<a<l 
X 

with boundary conditions 
u(0) = 0, u(1) = cos 1. 

This example has been taken from Gustafsson [2] and has the exact solution 
u(x) =x1-u cos x. 

See Tables V and VI. 

EXAMPLE 3. We solve 2x( 1 + x) y” + (1 + 5x)y’ + 4’ = 0 with boundary 
conditions y(O) = 1.0, y( 1.5) = 1.0. This problem was solved earlier by Cohen and 
Jones [3] and has the exact solution given by y(x) = (1 + fi)/(l + x). 

See Table VII. 
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TABLE V 

Numerical Results for Example 2 (u = 0.5) 

X S=O.I 6 = 0.2 6 = 0.4 

0.1 0.31464841 - - 
0.2 0.43829967 0.43829892 - 

0.3 0.52326032 0.52325916 
0.4 0.58253142 0.5825299 1 0.5825301 
0.6 0.63930355 0.63930194 0.6393022 
0.8 0.62315431 0.62315313 0.6231534 
0.9 0.58971162 0.58971083 0.5897109 

TABLE VI 

Comparison of Maximum Errors” 

N= I/h 6 
Gustafsson’s 

solution 
Invariant imbedding 

solution 

40 0.1 1.5 x 10-Z 4.4 x loam* 
80 7.2 x lo-’ 

160 4.0 x 10-E 

40 0.2 7.9 x lo-’ 1.8 x lo-’ 
80 4.4 x 10-n 

160 2.6 x 1O--9 

40 0.4 3.7 x lo.-” 7.4 x 10 y 
80 2.1 x 10-9 

160 1.3 x lo-‘0 

a The step size h refers only to Gustafsson’s case. 

TABLE VII 

Numerical Results for Example 3 with 6 = 0.5 

Invariant imbedding 
X solution Cohen’s solution Exact solution 

0.5 1.243902 1.243964 1.244017 
0.6 1.217836 1.217871 1.217927 
0.7 1.190924 1.190939 1.190997 
0.8 1.640782 1.164078 1.164136 
0.9 1.137794 1.137781 1.137840 
1.0 1.112338 1.112319 1.112372 
1.1 1.087842 1.087824 1.087868 
1.2 1.064364 1.064348 1.064382 
1.3 1.041912 1.041900 1.041924 
1.4 1.020469 1.020462 1.020474 
1.5 1 .ooOOoo 1 .oooooo 1 .oooooo 
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6. DISCUSSION AND CONCLUSION 

The numerical results for Example 1 for different values of 6 are presented in 
Tables I-IV. The computed solutions at various values of x compare very well with 
the analytical solution (series solution). This example was solved earlier by Jamet (by 
finite difference method) and Reddien (by collocation method) and their computed 
solutions at x = 0.5 for different mesh sizes are given in Table II. This table also 
contains solution computed at x = 0.5 by invariant imbedding method using a 
Runge-Kutta-Fehlberg scheme with step size control to solve our initial value 
problems. Thus the step sizes h given in the table have no direct relevance to 
invariant imbedding solution. As is evident from the table, the invariant imbedding 
solution is much superior to the solution obtained by Jamet or Reddien for a very 
fine mesh. The behaviour of the solution when 6 is very near to the singularity is 
shown in Tables III and IV. It has been observed here that a comparatively smaller 
step size is required (as expected) to achieve the desired accuracy in the solutions. 

Tables V and VI give the numerical results for Example 2. This example, which 
corresponds to the non-homogeneous case of Jamet’s equation, has been extensively 
studied by Gustafsson [2] using some compact and non-compact difference schemes 
of higher order. The computed solutions at different points with respect to several 
values of 6 are presented in Table V. The comparison of maximum error incurred in 
the solutions obtained by our method and that of Gustafsson is made in Table VI. 
The maximum error shown here in the case of Gustafsson corresponds to a compact 
difference scheme of order 4. The superiority of our method in most of the cases is 
evident from the results. 

Some more numerical experiments were done on an example solved earlier by 
Cohen and Jones [3]. The numerical results obtained by our method and the 
comparison of those solutions with Cohen’s solutions are given in Table VII. Cohen 
and Jones used economized expansion of the power series on the interval [0, 81 as 
against a series solution by us on the same interval. In the remaining part of the 
interval [S, b], Cohen and Jones used finite difference approximations with deferred 
corrections. The solutions obtained by our method compare well with Cohen’s 
solutions and that of the exact solutions. 

In conclusion, the invariant imbedding method is an efficient and powerful 
technique for solving singular boundary value problems. 
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